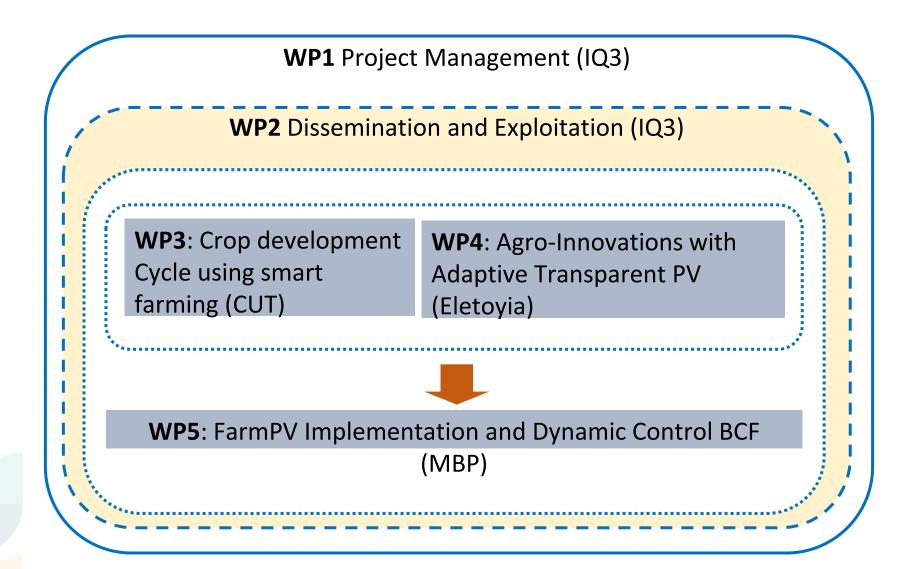


Coordinator Update

Dr Charalambos Anastassiou, IQ3SOLR 4/10/2024

Online Teams Meeting

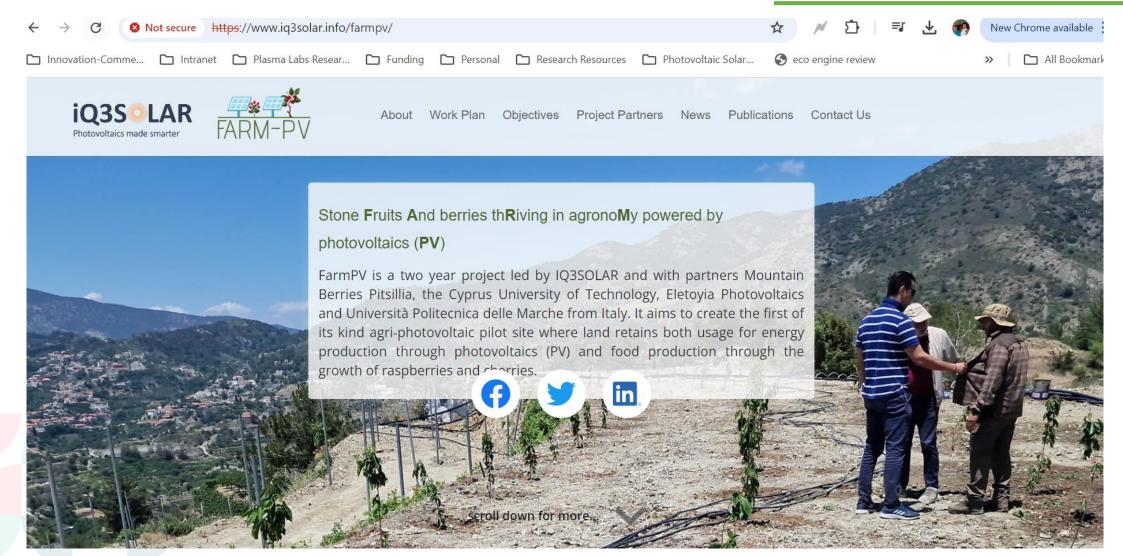

Goals for Today

- Get an update per work package
- Coordinate next steps
- Identify any critical paths
- Discuss any open issues

Work Package Overview

Consortium

- Signed the partnership agreement with the FRO
- Set up the common drive for sharing that we all have to be using.
- Completed the kick-off meeting
- Templates for deliverable and presentations


Deliverables 1st year

Del	Deliverable	WP	Туре	Dissemination	Due	Lead
MS1	MS1: Kickoff meeting (Due M1)	WP1	Pictures	Public	1	IQ3
MS2	Press release and other activities announcing the commencement of the	WP2	Screen shot	Public	1	
	project (Due: M1)					IQ3
D1	Company quality system	WP1	Document	Confidential	2	IQ3
D12	Transparency Control Coating Research Report	WP4	Report	Public	3	Eletoyia
MS3	Website	WP2	Screen shot	Public	3	IQ3
MS5	Selection, planting and acclimatization of fruit material	WP3	Prelim Report	Confidential	3	CUT
MS7	Completion of transparency control coating research and selection	WP4	Code	Confidential	3	Eletoyia
MS9	Ordering all the parts for creating the PV canopy	WP5	Purchase order	Confidential	3	MBP
D5	Dissemination and Communication Plan	WP2	Report	Public	4	IQ3
D6	Data Management Plan	WP2	Report	Confidential	5	IQ3
MS10	Obtain licenses and permits to begin construction of the PV canopy system	WP5	licenses	Confidential	5	MBP
D13	PV Mounting Structure Design	WP4	Document	Confidential	6	Eletoyia
D7	Initial IPR Management & Exploitation Plan	WP2	Report	Confidential	6	IQ3
MS8	Installation and preliminary testing of the coated transparent PVs	WP4	Pictures	Confidential	8	Eletoyia
D14	Installed and Tested Smart PV System	WP4	Report	Confidential	9	Eletoyia
MS11	Demonstration of a scalable AgroPV	WP5	Pictures	Confidential	9	MBP
MS6	Preliminary test of fruit quality attributes	WP3	Prelim Report	Confidential	9	CUT
D10	Data collection with preliminary data	WP3	Report	Confidential	11	CUT
D15	Energy Management Interface	WP4	Software	Public	12	Eletoyia
D3	Midterm progress report	WP1	Report	Confidential	12	IQ3
MS4	Submission of joint proposal	WP2	Copy of	Confidential	12	
			submission			IQ3

WP2. Dissemination

Project Brochure

- This can be added to presentations or can stand on its own if you want to introduce the project to someone.
- It is meant to bring us opportunities for collaboration, exploitation etc.

Stone Fruits And berries thRiving in agronoMy powered by photovoltaics (PV)

Programme: CO-DEVELOP-AG-SH-HE

Grant Agreement: CODEVELOP-AG-SH-

HE/0823/0118

Duration: 2/5/2024 – 1/5/2026

Coordinator: IQ3SOLAR LTD

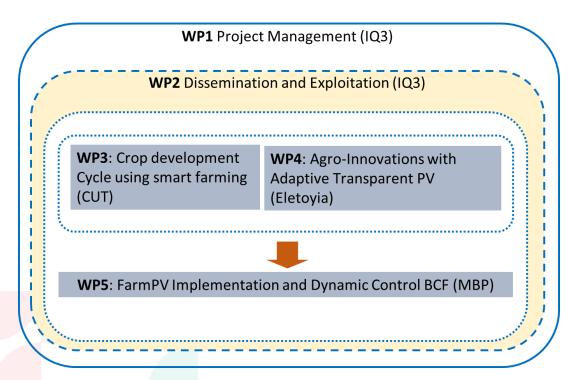
Funding Agency: Research and Innovation

Foundation of Cyprus (RIF)

Consortium

About FarmPV

The replacement of conventional energy sources such as oil and gas by renewable ones such as photovoltaics (PV) promises to bring inexpensive, abundant, and clean, non-polluting energy to society. With limited energy resources but plenty of sun, Cyprus is rapidly deploying PV parks that produce energy for the grid. However, suitable land is becoming scarce and expensive, while the convert of farmland to PV parks is no longer desirable (or allowed). Finding ways to use the land for energy while preserving and even enhancing the ability of the land for food production is ideal.


FarmPV will explore agro photovoltaics (agroPV) technologies towards enhanced production volumes of added-value commodities such as raspberry and sweet cherry fruits (RCF) to meet the local demand for Cyprus in a sustainable, economical, and scalable way.

Objectives

- 1.Innovative Fruit Production System (IFPS): Through PV and agricultural landscape fusion: Incorporate solar energy and exploit it to adapt the climate and to protect against weather extremes.
- **2. PV system design** aiming at the optimal integration of photovoltaic (PV) systems in stone fruit and berry cultivation. Develop systems for monitoring and autonomous operation.
- **3. Energy management system (EMS):** Put all the software (PV monitoring, precision irrigation/cleaning of panels under one umbrella for easy and efficient operation by the end user (farmer in this case).
- 4. Monitoring the quality and yield of the fruit: evaluate fruit quality and yield efficiency of the different production systems: (1) AgroPV and pearl shading net, (2) pearl shading net and (3) without any shading or protection.

Implementation Plan

Impact

Expected Economical Benefits: FarmPV will pioneer agrovoltaics system for improved fruit production and quality, while respecting environmental, economical and scientific concerns. It will combine farming, scientific financial and industrial efforts in order to accelerate the ecosystem of agroPV in Cyprus

Food and energy security: A small island country like Cyprus with no energy resources (other than the sun and wind) and with limited agricultural production is particularly vulnerable to energy and food supply crisis. FarmPV is putting Cyprus to the path of energy and food independence that ultimately improves the economy and brings stability to the country.

Expected environmental impact: The expected environmental impact of integrating advanced photovoltaic (PV) systems with berry cultivation in the project is multifaceted: **1.Dual land-use** and land-transformation, while taking into account community acceptance and ecosystem balance. **2.Carbon Footprint Reduction:** As a clean and renewable source of energy, solar power doesn't release pollutants into the atmosphere, contributing to a reduction in the overall carbon footprint of the agricultural operations

Connect with us

Contact Person:

Dr Charalambos Anastassiou IQ3SOLAR LTD

ca@iq3solar.com

www.iq3solar.com/farmpv

@FarmPVproject

@FarmPV

@iq3solar

Acknowledgement

The project CODEVELOP-AG-SH-HE/0823/0118 is funded by the European Union NextGenerationEU instrument, through the Research and Innovation Foundation of Cyprus.

Social Media

- https://www.facebook.com/FarmPVproject
- https://x.com/iq3solar
- https://www.linkedin.com/company/102929299/admin/ dashboard/

Issues to be discussed

- Components for the PV. Infrastructure etc. Update from Nicolas
- Training in Italy. Update from Neri.
- Parts and equipment purchased. Update from everyone.
- Next meeting

Next Meeting

- Presentation on deliverables.
- Update from everyone.

Acknowledgement

The project CODEVELOP-AG-SH-HE/0823/0118 is funded by the European Union NextGenerationEU instrument, through the Research and Innovation Foundation of Cyprus.

